Calculating correlations wth corrr

eng
data analysis
explanatory analysis
tidyverse
an easy way to calculate and visualize correlations
Author

Ana Luisa Bodevan

Published

September 8, 2025

The corrr package makes calculating correlations significantly quicker and easier than base R.

library(corrr)
library(tidyverse)
library(dplyr)

mtcars
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

For this post, we will be using the built-in mtcars dataset, extracted from the 1974 Motor Trend magazine, containing 11 variables describing designs and performance of 32 automobiles.

The correlate() function

We can obtain our correlation table with one line of code:

mtcars %>% correlate()
# A tibble: 11 × 12
   term     mpg    cyl   disp     hp    drat     wt    qsec     vs      am
   <chr>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>  <dbl>   <dbl>  <dbl>   <dbl>
 1 mpg   NA     -0.852 -0.848 -0.776  0.681  -0.868  0.419   0.664  0.600 
 2 cyl   -0.852 NA      0.902  0.832 -0.700   0.782 -0.591  -0.811 -0.523 
 3 disp  -0.848  0.902 NA      0.791 -0.710   0.888 -0.434  -0.710 -0.591 
 4 hp    -0.776  0.832  0.791 NA     -0.449   0.659 -0.708  -0.723 -0.243 
 5 drat   0.681 -0.700 -0.710 -0.449 NA      -0.712  0.0912  0.440  0.713 
 6 wt    -0.868  0.782  0.888  0.659 -0.712  NA     -0.175  -0.555 -0.692 
 7 qsec   0.419 -0.591 -0.434 -0.708  0.0912 -0.175 NA       0.745 -0.230 
 8 vs     0.664 -0.811 -0.710 -0.723  0.440  -0.555  0.745  NA      0.168 
 9 am     0.600 -0.523 -0.591 -0.243  0.713  -0.692 -0.230   0.168 NA     
10 gear   0.480 -0.493 -0.556 -0.126  0.700  -0.583 -0.213   0.206  0.794 
11 carb  -0.551  0.527  0.395  0.750 -0.0908  0.428 -0.656  -0.570  0.0575
# ℹ 2 more variables: gear <dbl>, carb <dbl>

It even tells us it used the Pearson method to calculate the correlations!

Tidy framework

The corrr package was built following a tidy logic – basically, the usual packages used for data analysis de wrangling (tidyverse, dplyr) can also be used with corrr. This is possible because corrr works on correlations data frames, not matrices. So, while not useful for mathematical calculations, it makes it easier to analyse correlations between variables.

mtcars %>% 
  correlate() %>% 
  focus(mpg, cyl) %>% 
  arrange(desc(mpg))
# A tibble: 9 × 3
  term     mpg    cyl
  <chr>  <dbl>  <dbl>
1 drat   0.681 -0.700
2 vs     0.664 -0.811
3 am     0.600 -0.523
4 gear   0.480 -0.493
5 qsec   0.419 -0.591
6 carb  -0.551  0.527
7 hp    -0.776  0.832
8 disp  -0.848  0.902
9 wt    -0.868  0.782

From this table, the correlations shows that:

  • Cars with many cylinders, big engines, high horsepower, heavy weightlow mpg, automatic, fewer gears.

  • Cars with fewer cylinders, smaller engines, lighter weighthigher mpg, manuals, more gears.

focus() from the corrr package makes it easy to explore only the correlations we are interested in

You can also print the full table but exclude either the top or bottom triangle to make it easier to visualize:

mtcars %>%
  correlate() %>%
  shave() %>%   # upper triangle
  focus(mpg:drat, mirror = TRUE) %>% # narrow columns further to better viz 
  fashion()
  term  mpg  cyl disp   hp drat
1  mpg                         
2  cyl -.85                    
3 disp -.85  .90               
4   hp -.78  .83  .79          
5 drat  .68 -.70 -.71 -.45     

Visualizing correlations

corrr is very easy to visualize. It has its own functions, like network_plot, or you can use ggplot2 for customization.

mtcars %>%
  correlate() %>%
  network_plot(min_cor = 0.5)

mtcars %>%
  correlate() %>%
  stretch(na.rm = TRUE) %>%
  filter(x %in% c("mpg","cyl","disp","hp","drat"),
         y %in% c("mpg","cyl","disp","hp","drat")) %>%
  ggplot(aes(x, y, fill = r)) +
  geom_tile(color = "white") +
  geom_text(aes(label = round(r, 2)), color = "black", size = 4) +
  scale_fill_gradient2(
    low = "red", mid = "white", high = "blue", midpoint = 0,
    limits = c(-1, 1)
  ) +
  coord_equal() +
  theme_minimal(base_size = 14) +
  labs(fill = "Correlation")